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Abstract

The necessary condition for the onset of parallel flow in the fully developed region of an inclined duct is applied to the case of a cir-
cular tube. Parallel flow in inclined ducts is an uncommon regime, since in most cases buoyancy tends to produce the onset of secondary
flow. The present study shows how proper thermal boundary conditions may preserve parallel flow regime. Mixed convection flow is
studied for a special non-axisymmetric thermal boundary condition that, with a proper choice of a switch parameter, may be compatible
with parallel flow. More precisely, a circumferentially variable heat flux distribution is prescribed on the tube wall, expressed as a sinu-
soidal function of the azimuthal coordinate # with period 2p. A p/2 rotation in the position of the maximum heat flux, achieved by set-
ting the switch parameter, may allow or not the existence of parallel flow. Two cases are considered corresponding to parallel and non-
parallel flow. In the first case, the governing balance equations allow a simple analytical solution. On the contrary, in the second case, the
local balance equations are solved numerically by employing a finite element method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The subject of laminar mixed convection in vertical or
inclined ducts deserves a special interest for its applications
in the design of cooling systems for electronic devices or for
solar collectors. Several authors have presented theoretical
or experimental investigations most of which have been
reviewed, for instance, in Aung (1987). The literature of
the last decades includes many papers presenting theoreti-
cal investigations of buoyancy-induced flows in vertical
or inclined ducts. Some of these papers (Lavine, 1988;
Barletta and Zanchini, 1999, 2001; Chamkha et al., 2002;
Bühler, 2003; Weidman, 2006; Magyari, 2007) describe
analytical solutions with reference to fully developed paral-
lel flows. In fact, parallel flow represents the condition that
allows a drastic simplification of the governing balance
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equations, thus giving a chance to find exact solutions at
least for the simpler geometries: parallel plane channel, cir-
cular or annular duct, rectangular duct. However, if one
deals with inclined ducts, the condition of parallel flow
can be considered as an exception rather than a rule. This
conclusion is a direct consequence of the observation that,
in an inclined duct, the buoyancy force vector has a non-
vanishing projection on the plane of the duct cross-section.
In the fully developed region, the transversal components
of the buoyancy force are normally responsible for the
onset of a secondary flow that makes velocity a non-paral-
lel helicoidal vector field. It must be pointed out that, in
this reasoning, geometry matters. In fact, for a parallel
plane channel, parallel flows are still possible when the
channel is inclined, for the more commonly employed
thermal boundary conditions (Lavine, 1988; Barletta and
Zanchini, 2001). For different geometries of the duct
cross-section, as circular, annular or rectangular, this is
not true.
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Nomenclature

a dimensionless function, Eq. (10)
A function of X and Y, Eq. (9)
b dimensionless constant, Eq. (10)
B constant, Eq. (9)
g gravitational acceleration
g modulus of the gravitational acceleration
Gr Grashof number, Eq. (10)
k thermal conductivity
Nu Nusselt number, Eq. (38)
P difference between the pressure and the hydro-

static pressure
Pr Prandtl number, Eq. (10)
qw(#) incoming wall heat flux, Eq. (2)
q0 constant wall heat flux, Eq. (2)
r dimensionless radial coordinate, Eq. (10)
R radial cylindrical coordinate
R0 duct radius
Re Reynolds number, Eq. (10)
T temperature
T0 average temperature in a duct cross-section, Eq.

(11)
u dimensionless axial velocity component, Eq.

(10)
u1(r), u2(r) dimensionless functions of r, Eq. (23)
Uz axial velocity component
U0 average velocity in a duct cross-section, Eq. (12)
U velocity

u 0 dimensionless 2D velocity vector, Eq. (10)
x, y dimensionless Cartesian coordinates, Eq. (10)
X, Y, Z Cartesian coordinates
Y unit vector in the Y-direction

Greek symbols

a thermal diffusivity
b coefficient of thermal expansion
ek dimensionless kinetic energy of secondary flow,

Eq. (42)
# angular cylindrical coordinate
H dimensionless temperature, Eq. (10)
K dimensionless parameter, Eq. (33)
l dynamic viscosity
m kinematic viscosity
n dimensionless switch parameter, Eq. (2)
. mass density
.0 mass density at temperature T0

u tilt angle of the duct axis
X dimensionless parameter, Eq. (33)

Superscripts, Subscripts
0 2D vector obtained by projection in the (X,Y)-

plane
max, min maximum, minimum value in a duct cross-

section
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In a recent paper (Barletta, 2005), a criterion to establish
whether parallel flow in an inclined duct is possible or not
has been discussed. This criterion is in fact a necessary con-
dition for parallel flow and, as such, precludes the possibil-
ity of a parallel velocity field when it is not fulfilled. In
Barletta (2005), it is shown that parallel flow is possible
only if the temperature gradient, the unit vector in the axial
direction and the gravitational acceleration are everywhere
coplanar vectors. The necessary condition is tested in the
case of a parallel plane channel, showing that the widely
studied boundary condition of isothermal walls with
unequal temperatures is compatible with parallel flow.
However, the compatibility holds only if the channel is
tilted in the direction orthogonal to the boundary planes.
If, on the other hand, the channel is tilted in the direction
parallel to the boundary planes, no parallel flow is possible
(Barletta, 2005).

The aim of the present paper is to extend the analysis
presented in Barletta (2005), in order to show that proper
thermal boundary conditions may allow the onset of paral-
lel flow also for duct geometries different from the parallel
plane channel. Reference is made to an inclined circular
tube. The prescribed boundary condition is a simple non-
axisymmetric thermal boundary condition, namely a wall
heat flux sinusoidally varying in the angular direction. In
linear cases, this boundary condition yields what can be
considered a fundamental solution for the analysis of non-
axisymmetric flows by means of Fourier series (Barletta
et al., 2003). It is shown that the same thermal boundary
condition may yield parallel or non-parallel flow depending
on the value of a switch parameter that yields a p/2 rota-
tion in the wall heat flux distribution. In the case of parallel
flow, the governing balance equations admit a straightfor-
ward analytical solution. In the case of non-parallel flow, a
simple analytical solution of the balance equations is not
possible and the study is performed numerically by
employing a finite element solution procedure. A further
objective of the present paper is to extend the criterion
for parallel flow discussed in Barletta (2005) and recalled
in the next section, in order to include duct flows with an
axial temperature change as well as duct flows in a fluid-
saturated porous medium. The latter task is accomplished
in two short appendices.

2. Necessary condition for parallel flow

Let us analyze mixed convection flow in an inclined duct
with an arbitrary cross-sectional shape. Let us choose
Cartesian coordinates (X,Y,Z) such that the duct cross-
section belongs to the (X,Y)-plane and the Z-axis is parallel



Fig. 1. Sketch of the inclined tube.
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to the duct axis. In other words, the duct cross-section cor-
responds to a domain D in the (X,Y)-plane.

As it has been shown in Barletta (2005), by invoking the
validity of the Boussinesq approximation and by assuming
that the boundary conditions imply an axially invariant
temperature field T, i.e. oT/oZ = 0, the following statement
holds

A parallel flow solution of the local balance equations, i.e.

a solution such that U 0 = 0, exists in the fully developed

region only if the temperature field is such that
g0 � $0T ¼ 0, at every position in the domain D.

In this statement, symbols U 0 and g 0 denote the two-
dimensional projections on the (X,Y)-plane of the fluid
velocity U and of the gravitational acceleration g, while
$0 is the two-dimensional gradient (o/oX,o/oY).

In Appendix A, it is shown that the above statement
holds also for cases such that the temperature field under-
goes an axial change, oT/oZ 5 0. Moreover, in Appendix
B, it is shown that the same statement holds not only for
a clear fluid, but also for the case of flows in a fluid-satu-
rated porous medium according to the Darcy–Forchheimer
model. In the present paper, the term ‘‘clear fluid’’ will be
used, following the common practice of treatises on con-
vective flow in porous media, in order to denote the classi-
cal Navier–Stokes flow when compared to seepage flow in a
porous medium.

The condition for the existence of parallel flow implies
that, for a non-vertical duct (g 0 5 0), this special flow solu-
tion for the fully developed regime can be found only if the
thermal boundary conditions are such that either the vector
field $0T is a parallel field with the same direction as the
vector g 0 or the fluid changes its temperature only in the
axial direction, i.e. $0T ¼ 0. The latter case can hardly be
arranged in practice. On the other hand, in the former case,
two-dimensional heat transfer occurs in the direction paral-
lel to g 0 and in the axial direction. One can easily conclude
that, for a vertical duct (g 0 = 0), a parallel flow solution
always exists. Roughly speaking, the necessary condition
for parallel flow in a non-vertical duct is that the isotherms
on a plane transversal to the flow direction must be parallel
straight lines orthogonal to the direction of g 0. Such a con-
dition can be hardly fulfilled whenever the duct is not a
parallel plane channel. In fact, for a plane channel, the
geometry of the boundaries allows one to get parallel
straight isotherms in the fluid, for instance, by prescribing
uniform temperatures on both the boundary walls (Bar-
letta, 2005). For a different geometry of the duct, the nec-
essary condition for parallel flow can be fulfilled only by
prescribing more complicated thermal boundary condi-
tions, as it is shown in the next section with reference to
a circular duct.

3. Fully developed flow in an inclined tube

Let us consider a clear fluid flowing in an inclined circu-
lar duct having radius R0 and subjected to a non-axisym-
metric wall heat flux. A sketch of the duct and of the
origin of the angular coordinate with respect to the gravi-
tational field is given in Fig. 1. As it is shown by this figure,
the tilt angle between the duct axis and the direction of the
gravitational acceleration is u and the vector g 0 is given by

g0 ¼ �ðg sin uÞY; ð1Þ

where Y is the unit vector in the Y-direction. The incoming
wall heat flux is expressed as

qwð#Þ ¼ k
oT
oR

����
R¼R0

¼ q0 sin #þ n
p
2

� �
; ð2Þ

where (R,#) are two-dimensional polar coordinates, while
n is a dimensionless switch variable which can be equal
either to 0 or 1. On account of Eq. (2), one obtains in this
case that the circumferentially averaged wall heat flux van-
ishes. Moreover, let us assume that the effect of viscous dis-
sipation is negligible and that the flow is fully developed.
As a consequence, both the velocity field U and the temper-
ature field T are invariant in the axial direction, namely
oU/oZ = 0 and oT/oZ = 0. Thus, the governing equations
can be written as

$0 �U0 ¼ 0; ð3Þ
.0U0 � $0U0 ¼ �.0bðT � T 0Þg0 � $0P þ lr02U0; ð4Þ

.0U0 � $0U z ¼ �.0bðT � T 0Þgz �
oP
oZ
þ lr02U z; ð5Þ

.0cpðU0 � $0T Þ ¼ kr02T : ð6Þ
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Since U and T do not depend on Z, by differentiating Eqs.
(4) and (5) with respect to Z, one obtains

$0
oP
oZ
¼ 0; ð7Þ

o2P

oZ2
¼ 0: ð8Þ

Eqs. (7) and (8) allow one to infer that field P can be un-
iquely represented as

P ðX ; Y ; ZÞ ¼ AðX ; Y Þ þ BZ; ð9Þ

where B is a constant.
Note that the fields U 0 and T can be determined by solv-

ing Eqs. (3), (4) and (6). In other words, these fields are not
influenced by the axial component Uz. The latter compo-
nent can be obtained as a last step of the solution proce-
dure, i.e. by solving Eq. (5).

Let us introduce the dimensionless quantities,

u0 ¼ 2R0U0

m
; u ¼ U z

U 0

; H ¼ k
T � T 0

q0R0

;

x ¼ X
R0

; y ¼ Y
R0

; r ¼ R
R0

; a ¼ 4R2
0.0A
l2

; b ¼ � 2R2
0B

lU 0

;

Re ¼ 2R0U 0

m
; Gr ¼ 8gbq0R4

0

km2
; Pr ¼ m

a
:

ð10Þ

The reference temperature T0 and the reference velocity U0

are given by

T 0 ¼
1

pR2
0

Z R0

0

dR
Z 2p

0

d#RT ; ð11Þ

U 0 ¼
1

pR2
0

Z R0

0

dR
Z 2p

0

d#RU z: ð12Þ

Thus, Eqs. (3)–(6) can be rewritten as

ou0x
ox
þ

ou0y
oy
¼ 0; ð13Þ

u0x
ou0x
ox
þ u0y

ou0x
oy
¼ � oa

ox
þ 2

o
2u0x
ox2
þ o

2u0x
oy2

� �
; ð14Þ

u0x
ou0y
ox
þ u0y

ou0y
oy
¼ Gr sin u

2
H� oa

oy
þ 2

o
2u0y
ox2
þ

o
2u0y
oy2

 !
; ð15Þ

u0x
ou
ox
þ u0y

ou
oy
¼ Gr cos u

2Re
Hþ bþ 2

o
2u

ox2
þ o

2u
oy2

� �
; ð16Þ

Pr
2

u0x
oH
ox
þ u0y

oH
oy

� �
¼ o2H

ox2
þ o2H

oy2
: ð17Þ

On account of Eq. (11), the dimensionless temperature H
must fulfil the constraintZ 1

0

dr
Z 2p

0

d#rH ¼ 0: ð18Þ
3.1. The case n = 0

If n = 0, a solution of Eqs. (2) and (13)–(17) can be
found such that H is a function only of the Cartesian coor-
dinate y. Thus, as a consequence of Eq. (1), the condition
for parallel flow, g0 � $0T ¼ 0, is fulfilled. One can easily
find that

H ¼ y ¼ r sin#: ð19Þ
It must be pointed out that the boundary condition equa-
tion (2) with n = 0 is the only one that is compatible with
parallel flow for u 5 0. In fact, the parallel flow condition
implies that H depends only on y and, thus, Eq. (17) can be
satisfied in this case only if H is a linear function of y. Fi-
nally, the constraint equation (18) leads to the conclusion
that H must be proportional to y and the proportionality
constant can be set to 1 by a proper redefinition of q0.
To summarize, parallel flow implies the validity of Eq.
(19) and yields the thermal boundary condition equation
(2) with n = 0.

Since the flow is parallel, u 0 = 0 and the axial velocity
component u fulfils the equation

o2u
ox2
þ o2u

oy2
þ Gr cos u

4Re
Hþ b

2
¼ 0; ð20Þ

together with the no-slip condition for r = 1. In order to
determine u, it is convenient to express Eq. (20) in cylindri-
cal polar coordinates

o2u
or2
þ 1

r
ou
or
þ 1

r2

o2u

o#2
þ Gr cos u

4Re
r sin#þ b

2
¼ 0: ð21Þ

A solution of Eq. (21) that fulfils the no-slip boundary
condition

uð1; #Þ ¼ 0; ð22Þ
can be sought in the form

uðr; #Þ ¼ u1ðrÞ þ u2ðrÞ sin#: ð23Þ
By substituting Eq. (23) in Eq. (21), one obtains a pair of
ordinary differential equations

d2u1

dr2
þ 1

r
du1

dr
þ b

2
¼ 0; ð24Þ

d2u2

dr2
þ 1

r
du2

dr
� u2

r2
þ Gr cos u

4Re
r ¼ 0; ð25Þ

subjected to the boundary conditions

u1ð1Þ ¼ 0 ¼ u2ð1Þ: ð26Þ
One obtains

u1ðrÞ ¼
b
8
ð1� r2Þ; ð27Þ

u2ðrÞ ¼
Gr cos u

32Re
rð1� r2Þ: ð28Þ

The value assumed by the constant b can be obtained by
imposing the constraint (12), thus yielding

b ¼ 16: ð29Þ
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In fact, one gets the same value of b that would be obtained
in the case of isothermal Poiseuille flow. This result could
have been expected since, as shown by Eq. (23), the buoy-
ancy-induced term u2(r) sin# in the expression of u(r,#) has
a vanishing average value in a duct cross-section. Finally,
the transverse distribution of the dimensionless difference
between the pressure and the hydrostatic pressure, repre-
sented by function a(r,#), is obtained from Eqs. (14), (15)
and (19). These equations yield

aðr; #Þ ¼ Gr sin u
4

r2 sin2 #: ð30Þ

Function a(r,#) can be determined only up to an arbitrary
additive constant. In Eq. (30), this constant has been fixed
so that a = 0 for r = 1 and # = 0. Eqs. (19), (23) and (27)–
(30) show that the dimensionless solution is governed by
parameters Gr and Re as well as by the tilt angle u and does
not depend explicitly on Pr.
3.2. The case n = 1

If n = 1, on account of Eq. (2), the incoming wall heat
flux qw(#) is proportional to cos#, i.e. to x. Then, the gra-
dient of T cannot be everywhere parallel to g 0 that is direc-
ted along the y-axis. One thus concludes, in this case, that it
is impossible to have a parallel flow solution, unless u = 0.
For u = 0, the duct is vertical and g 0 = 0, so that the con-
dition g0 � $0T ¼ 0 is satisfied at every point inside the
duct. In this case, a simple analytical solution is allowed.
Eq. (17) reduces merely to the Laplace equation for H.
Hence, consistently with the thermal boundary condition,
one has

H ¼ x ¼ r cos#: ð31Þ

Following a procedure similar to that described in Section
3.1, one gets

uðr; #Þ ¼ 2ð1� r2Þ 1þ Gr
64Re

r cos#

� �
;

b ¼ 16; aðr; #Þ ¼ 0: ð32Þ

This analytical solution for the vertical duct can be em-
ployed as a benchmark to test the numerical solution
procedure.

For u 5 0, the non-parallel laminar solution can be
obtained numerically by employing a Galerkin finite ele-
ment method, implemented through the software package
Comsol Multiphysics (� Comsol, AB). Although the flow
has a 3D nature due to the secondary flow in the xy-plane,
the numerical solution, based on Eqs. (13)–(17), is obtained
by a purely 2D procedure. Eqs. (13)–(17) reveal that the
solution depends on four governing parameters: Re, Gr,
Pr and the tilt angle u. However, one can manage these
parameters in order to hide the dependence on u. In fact,
the four governing parameters can be reduced to three by
noticing that Eqs. (13)–(17) depend only on
X ¼ Gr sin u; K ¼ Gr
Re

cos u ð33Þ

and Pr. By this optimized parametrization, the limiting
case of a vertical duct (u! 0) can be dealt with by taking
the limit X! 0. On the other hand, the limiting case of a
horizontal duct (u! p/2) can be treated by taking the limit
K! 0. Note that the optimized parametrization in terms
of X and K is similar to that introduced by Lavine (1988).

Eq. (32) reveals that, for a vertical duct, the value of b is
in any case 16. Therefore, one can base the numerical solu-
tion procedure on the guess that b = 16 for every other pos-
sible value of the tilt angle u or, stated differently, for every
possible values of X and K. The physical meaning of this
guess is that the dimensionless axial pressure drop is not
influenced by the buoyancy effect. Stated differently, buoy-
ancy does not affect the relation between the mass flow rate
and the axial pressure gradient. Thus, this relation is the
same that holds in the case of isothermal flow (Poiseuille

flow). In order to test the reliability of this guess, one pre-
scribes the additional constraint induced by Eq. (12),
namely

1� 1

p

Z 1

0

dr
Z 2p

0

d#ru ¼ 0: ð34Þ

The method to get the numerical solution involves two
steps. First, one solves Eqs. (13)–(15) and (17), that is noth-
ing but a 2D natural convection problem in a circular cav-
ity. Then, one uses the obtained numerical values of u 0 and
H to solve Eq. (16) and thus obtain u. While the fields u 0

and H depend only on Pr and X, the field u depends also
on K.

One can easily check that, for fixed values of Pr, Eqs.
(13)–(17) as well as the boundary conditions prescribed at
r = 1

u ¼ 0;
oH
or
¼ cos# ð35Þ

undergo two fundamental symmetries

x! �x

y ! y

X! �X

K! �K

0
BBB@

1
CCCA)

u0x ! �u0x
u0y ! u0y
u! u

H! �H

a! a

0
BBBBBB@

1
CCCCCCA
; ð36Þ

x! x

y ! �y

X! X

K! �K

0
BBB@

1
CCCA)

u0x ! u0x
u0y ! �u0y

u! u

H! �H

a! a

0
BBBBBB@

1
CCCCCCA
: ð37Þ

On account of these symmetries, one can restrict the anal-
ysis to positive values of both X and K.

The Nusselt number can be defined as

Nu ¼ 2R0q0

kðT max � T minÞ
¼ 2

Hmax �Hmin

: ð38Þ
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It must be pointed out that the maximum and minimum
values of H always occur on the duct wall r = 1. In the
cases of parallel flow, defined either by Eqs. (19) and
(23)–(30) or by Eq. (32), one has Nu = 1. Indeed, the con-
vective heat transfer between the hotter and the cooler
parts of the duct wall is entirely due to the secondary flow.

4. Discussion of the results

4.1. The parallel flow case (n = 0)

The parallel flow solution in the case n = 0 is repre-
sented in Fig. 2. This figure displays plots of u(r,#) for dif-
ferent values of the governing parameter K. It is easily
verified that, for K = 50, the z-velocity profile presents a
maximum next to 2 and displays a not too marked asym-
metry with respect to rotations around the z-axis. In this
sense, it does not differ much from the isothermal flow
Fig. 2. Case n = 0. Plots of u(r,
Poiseuille profile. On the other hand, stronger differences
appear in the other three plots, where the flow reversal phe-
nomenon arises. The onset of flow reversal takes place next
to (r = 1,# = 3p/2), or (x = 0,y = � 1). In fact, when
K > 0, this position represents the coolest one for upward
flow and the hottest one for downward flow. The value
of K corresponding to the onset of flow reversal can be eas-
ily found out by checking the sign of ou/or evaluated at
(r = 1,# = 3p/2). On account of Eqs. (23), (27), (28), one
infers that flow reversal takes place when

K > 64: ð39Þ
What happens in the case K < 0 is easily established from
Eqs. (23), (27), (28), by noticing that the transformation,

K! �K; #! #þ p; ð40Þ
#) for different values of K.



Table 2
Numerical solution (n = 1): comparison with the analytical benchmark
solution (in italic) for X! 0 and Pr = 7

K umax umin

A. Barletta / Int. J. Heat and Fluid Flow 29 (2008) 83–93 89
leaves u invariant. In particular, this symmetry implies
that, for K < 0, the onset of flow reversal takes place next
to (r = 1,# = p/2) for

K < �64: ð41Þ

50 2.24683 0.00000

2.24682 0.

100 2.72997 �0.184710
2.73003 �0.184723

200 3.84788 �1.21167
3.84800 �1.21168

500 7.39422 �4.73249
7.39431 �4.73249

1000 13.3852 �10.7200
13.3855 �10.7200

2000 25.4017 �22.7348
25.4018 �22.7354

5000 61.4776 �58.8119
61.4789 �58.8123

The numerical solution is obtained with X = 10�7.

Table 3
Numerical solution (n = 1): values of umax, umin, Nu and ek for Pr = 7

X K = 10�7 K = 102 K = 103 K = 104

102 umax 2.000 2.613 12.05 108.2
umin 0.000 �0.1030 �9.385 �105.5
Nu 1.106 1.106 1.106 1.106
ek 0.06339 0.06339 0.06339 0.06339

103 umax 2.000 2.258 7.605 63.72
umin 0.000 0.000 �4.971 �61.08
Nu 1.705 1.705 1.705 1.705
ek 0.6491 0.6491 0.6491 0.6491

104 umax 1.999 2.100 5.059 37.97
umin 0.000 0.000 �2.440 �35.34
Nu 2.668 2.668 2.668 2.668
ek 2.608 2.608 2.608 2.608
4.2. The non-parallel flow case (n = 1)

The non-parallel flow is studied for a liquid with Pr = 7.
The computational domain is the dimensionless duct cross-
section, i.e. the unit circle. Seven structured meshes with an
increasing number of quadrangular elements from 1600 to
4900 are defined in this domain in order to test the grid
independence. Four quantities are monitored in order to
check the grid–independence: the maximum value umax

and the minimum value umin of u, the value of the Nusselt
number Nu and the value of the quantity

ek ¼
1

p

Z 1

0

dr
Z 2p

0

d#
ru02

2
: ð42Þ

The latter quantity represents the dimensionless kinetic en-
ergy associated with the secondary flow and thus is indepen-
dent of K. The grid independence has been tested with
reference to a rather critical flow condition, namely
X = 107 and K = 104. The results are compared in Table 1.
This table shows that the refinements succeed in driving
the numerical simulations to convergence. The parameter
most affected by the grid refinement is ek. However, the rel-
ative change of ek between the grid with 3600 elements and
that with 4900 elements (36% increase) is 0.03%, while the
other quantities umax, umin and Nu undergo changes around
0.005%. Moreover, the left hand side of Eq. (34) has values
lower than 2 · 10�15 in all the cases examined, thus confirm-
ing the validity of the guess b = 16. As a result of the grid
independence test, in the following, the mesh with 4096 ele-
ments will be used.

Another check on the reliability of the numerical code is
the comparison with the benchmark analytical solution
(Section 3.2) in the case of a vertical duct, X! 0. Table 2
refers to different positive values of K and displays the cal-
culated values of umax and umin. As it is shown by this table,
the comparison between the numerical solution, obtained
for X = 10�7, and the benchmark analytical solution reveals
a very good agreement, which, in most cases, holds for the
first 5 significant digits. Being ek independent of K, this
Table 1
Numerical solution (n = 1): grid independence test with structured meshes
having increasing refinements, for X = 107, K = 104 and Pr = 7

Mesh umax umin Nu ek

1600 elements 14.9298 �12.2820 7.45612 56.2996
2025 elements 14.9330 �12.2856 7.45412 56.2186
2500 elements 14.9349 �12.2867 7.45318 56.1743
3025 elements 14.9353 �12.2875 7.45256 56.1484
3600 elements 14.9353 �12.2876 7.45229 56.1323
4096 elements 14.9357 �12.2881 7.45212 56.1237
4900 elements 14.9359 �12.2882 7.45195 56.1149
quantity has a unique value for a vertical duct. Since this
special flow is a parallel one, the expected value of ek should
be zero. In fact, the numerically predicted value of ek is
rather small: 10�19.

In the following, the cases examined refer to 102
6

X 6 107 and 10�7
6 K 6 104. The choice K = 10�7 is a
105 umax 2.000 2.048 3.930 26.39
umin 0.000 0.000 �1.327 �23.76
Nu 3.854 3.854 3.854 3.854
ek 7.498 7.498 7.498 7.498

106 umax 2.001 2.027 3.278 19.49
umin 0.000 0.000 �0.6907 �16.85
Nu 5.417 5.417 5.417 5.417
ek 20.54 20.54 20.54 20.54

107 umax 2.001 2.016 2.863 14.94
umin 0.000 0.000 �0.3073 �12.29
Nu 7.452 7.452 7.452 7.452
ek 56.12 56.12 56.12 56.12
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good approximation of the limit K! 0, i.e. the limit of a
horizontal duct. Table 3 displays the values of umax, umin,
Nu and ek. It must be pointed out that both Nu and ek,
being constructed from the fields u 0 and H, do not depend
on the governing parameter K. Table 3 reveals two impor-
Fig. 3. Case n = 1. Plots of H (isotherms) and u 0 (pr
tant features: the Nusselt number and the quantity ek are
increasing functions of X; the onset of flow reversal (nega-
tive values of umin) takes place with higher threshold values
of K as X increases. Physically, an increasing value of X
means a stronger secondary flow. This implies obviously
oportional arrow plots) for different values of X.
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the increasing values of Nu and ek, but also the delayed
onset of the flow reversal phenomenon, induced by the
smaller temperature differences in the duct cross-section.
In fact, the flow reversal phenomenon is due to a suffi-
ciently intense buoyancy force that may cause locally a
fluid flow in the direction opposite to the mean flow. This
sufficiently intense buoyancy force arises when consider-
Fig. 4. Case n = 1. Contour plots of
able temperature differences are present within the duct
cross-section.

Table 3 shows that a horizontal duct (K = 10�7) displays
values of umin and umax compatible with the Poiseuille
velocity profile, whatever is the value of X. This means that
the coupling between the secondary flow and the axial flow
induced by the convective derivative term in Eq. (16) has a
u for different values of X and K.
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negligible effect in this case. For all the values of X and K
considered in Table 3, the left hand side of Eq. (34) has val-
ues lower than 4 · 10�15.

The influence of the parameters K and X on the velocity
and temperature field is also pointed out in Figs. 3 and 4.
Fig. 3 shows that, for lower values of X, the shape of the
isotherms implies a mainly conductive heat transfer in the
x-direction, while a dominant thermal stratification in the
direction of g 0 (y-direction) occurs for higher values of X.
Fig. 3 shows also that the secondary flow is almost every-
where directed in the #-direction, when X is small. On
the other hand, as X increases, stronger secondary flow
occurs in the neighborhood of # = 0 and # = p, where
the maximum incoming and outgoing heat fluxes are pre-
scribed. Fig. 4 reveals that the change in the shape of the
isotherms as X increases implies a displacement in the posi-
tions of the maximum and minimum values of u. For
X = 102, the position of the maximum axial velocity corre-
sponds to a value of # intermediate between 0 and p/2. For
X = 104, this position is definitely on the plane # = p/2.
The latter feature is connected to the thermal stratification
in the direction of g 0 shown in Fig. 3.

5. Conclusions

Fully developed and laminar mixed convection in an
inclined circular tube has been analyzed. The thermal
boundary condition prescribed at the duct wall is a non-
axisymmetric heat flux varying sinusoidally in the angular
direction. It has been shown that this thermal boundary
condition has a rather special feature: it can be made
compatible with parallel flow by a proper setting of a
switch parameter n. In fact, parallel flow in an inclined
duct different from a parallel plane channel is an excep-
tion rather than a rule, and this thermal boundary condi-
tion provides precisely the exception. A different tuning of
the switch parameter or, stated differently, a (p/2)-rota-
tion of the wall heat flux distribution restores the rule,
i.e. non-parallel flow. While, in the parallel flow case,
the governing balance equations admit a simple analytical
solution, the solution found in the non-parallel flow case
has been obtained following a numerical finite element
procedure. This numerical solution has been found in
the case Pr = 7, that means, approximately, water at
room temperature. The main features of this solution
are the following:

• The secondary flow velocity and the temperature field
depend on a unique parameter, X, whose value is deter-
mined by the fluid properties and by the duct radius, by
the amplitude of the wall heat flux distribution, q0, and
by the tilt angle, u. As a consequence, also the Nusselt
number depends only on X.

• The axial flow velocity component depends on X and on
another dimensionless parameter, K, that is determined
by the same quantities involved in the definition of X
as well as by the mass flow rate.
• The dimensionless pressure drop in the axial direction,
b, is not influenced by the buoyancy effect, i.e. it is inde-
pendent of X and of K. The Nusselt number and the
dimensionless kinetic energy ek associated to the second-
ary flow are both increasing functions of X.

• The coupling effect between the secondary flow and the
axial flow in the special case of a horizontal tube
(K! 0) is induced only by the convective derivative
term in the axial momentum balance and is rather small.
In fact, in all the cases examined, the axial velocity pro-
file for the horizontal tube has negligible differences
from the isothermal Poiseuille profile.
Appendix A. Parallel flow for a clear fluid

In the following, it will be shown that the restrictive
assumption of an axially invariant temperature field can
be released without altering the validity of the necessary
condition for parallel flow. Let us consider mixed convec-
tion flow of a clear fluid in an inclined duct, such that
the cross-section has an arbitrary shape. Let us choose a
Cartesian coordinate frame (X,Y,Z) as in Section 2.

In the fully developed region, where

oU

oZ
¼ 0;

o~.ðT ; T 0Þ
oZ

¼ 0; ðA:1Þ

the mass, momentum and energy balance equations can be
expressed according to the Boussinesq approximation as

$0 �U0 ¼ 0; ðA:2Þ
.0U0 � $0U0 ¼ ~.ðT ; T 0Þg0 � $0P þ lr02U0; ðA:3Þ

.0U0 � $0U z ¼ ~.ðT ; T 0Þgz �
oP
oZ
þ lr02U z; ðA:4Þ

.0cp $0 � ðU0T Þ þ U z
oT
oZ

� �
¼ k r02T þ o2T

oZ2

� �
þ lU: ðA:5Þ

In Eqs. (A.1)–(A.5), U represents the viscous dissipation
function and ~.ðT ; T 0Þ ¼ .ðT Þ � .0, where .(T) is the tem-
perature-dependent mass density evaluated through the
equation of state.

If one assumes U 0 = 0, Eq. (A.3) yields

~.ðT ; T 0Þg0 � $0P ¼ 0: ðA:6Þ
Since g 0 is a constant vector, by evaluating the two-dimen-
sional curl of both sides of Eq. (A.6), one obtains

0 ¼ $0 � ½~.ðT ; T 0Þg0 � $0P � ¼ �g0 � $0~.ðT ; T 0Þ
¼ �g0 � $0.ðT Þ ¼ b.ðT Þg0 � $0T : ðA:7Þ

Eq. (A.7) ensures the validity of the parallel flow condition
reported at the beginning of Section 2.

Appendix B. Parallel flow in a Darcy–Forchheimer porous

medium

The necessary condition for the occurrence of parallel
flow can be stated also in the case of stationary flow in a
fluid-saturated porous medium. Let us consider mixed con-
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vection flow in an inclined duct filled with a porous med-
ium, such that the cross-section has an arbitrary shape.
Let us assume the validity of Darcy–Forchheimer law as
well as of the Boussinesq approximation, so that

l
K

Uþ F .0ffiffiffiffi
K
p jUjU ¼ �$P þ ~.ðT ; T 0Þg; ðB:1Þ

where K is the permeability of the medium and F is Forch-
heimer coefficient. The velocity U represents the local aver-
age velocity of the fluid often called Darcy seepage velocity.
The local mass balance still implies that $ �U ¼ 0 and the
local energy balance equation is given by

.0cpU � $T ¼ k̂r2T þ l
K

U2; ðB:2Þ

where k̂ is the average thermal conductivity of the fluid-sat-
urated porous medium. As is well known, the term lU2/K
on the right hand side of Eq. (B.2) represents the viscous
dissipation contribution.

In the fully developed region defined through Eq. (A.1),
the governing equations can be expressed as

$0 �U0 ¼ 0; ðB:3Þ
l
K

U0 þF .0ffiffiffiffi
K
p U0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U02þU 2

z

q
¼�$0P þ~.ðT ;T 0Þg0; ðB:4Þ

l
K

U zþ
F .0ffiffiffiffi

K
p Uz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U02þU 2

z

q
¼�oP

oz
þ~.ðT ;T 0Þgz; ðB:5Þ

.0cp $0 � ðU0T ÞþU z
oT
oZ

� �
¼ k̂ r02T þo2T

oZ2

� �
þ l

K
U02þU 2

z


 �
:

ðB:6Þ

It is easily shown that, as in the case of a free fluid, the nec-
essary condition for the occurrence of parallel flow is the
local validity of the constraint g0 � $0T ¼ 0. The proof
coincides with that given in the preceding appendix. In-
deed, if the flow is parallel (U 0 = 0), Eq. (B.4) coincides
with Eq. (A.6).
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249–257.

Magyari, E., 2007. Normal mode analysis of the fully developed free
convection flow in a vertical slot with open to capped ends. Heat and
Mass Transfer 43, 827–832.

Weidman, P.D., 2006. Convection regime flow in a vertical slot:
continuum of solutions from capped to open ends. Heat and Mass
Transfer 43, 103–109.


	Parallel and non-parallel laminar mixed convection flow in an inclined tube: The effect of the boundary conditions
	Introduction
	Necessary condition for parallel flow
	Fully developed flow in an inclined tube
	The case  xi =0
	The case  xi =1

	Discussion of the results
	The parallel flow case ( xi =0)
	The non-parallel flow case ( xi =1)

	Conclusions
	Parallel flow for a clear fluid
	Parallel flow in a Darcy-Forchheimer porous medium
	References


